
?',jf_

The Min-Conflicts Heuristic:

Experimental and Theoretical Results

STEVE MINTON

ANDREW B. PHILIPS

MARK D. JOHNSTON

PHILIP LAIRD

AI RESEARCH BI_ANCH, MAIL STOP 244-17

NASA AMES RESEARCH CENTEI_

MOFFETT FIELD, CA 94035

(F_ASA- T_-IO7877) THE MIN-CONFLICTS

HEURISTIC: EXPERIMENTAL AND THEORETICAL

Rr SULTS (_ASA) 27 p

G]/6]

N_2-25445

Unclas

O091blO

|

_A._A Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-91-25

September 1991

REPORT DOCUMENTATION PAGE OMeNo 0704-0,88

P!J_liC re_ft_n(_ burden _cr this collection of bnformatron is est,mated to average t hour per re_pGnse, including the time for review;ncj instruCtions, searching existing data source,

gathenng and ma_ntaimng the data needed, and completing and reviewing the collection of reformation Send comments re<larding this burden estimate or any other aspect Of t_*s
¢oltection of information, including sugcjestions for reducing this burden, to Washin<:JtOn HeadQuar'.ers Services, Directorate tOT Jnfor_ation Operations and Reports. 1215 Jefferson

_av_5 H.'qh_ay, Suite)204. Arlington, VA 22202 J302. _nd to the Office of _4anagemenz _nd Budget, Paperwork Reduction Ptc ;ect (OTD4-O _BB), Washington. D£ 205D3.

1. AGENCY USE ONLY (Leave blank) 2.. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Dates attached

4. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

15. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

Attached

10. SPON SORING / MONITORING
AGENCY REPORT NUMBER

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Available for Public Distribution

13. ABSTRACT (Maximum 200words)

Abstracts ATTACHED

12b, DISTRIBUTION CODE

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-18
298-102

2

The Min-Conflicts Heuristic"

Experimental and Theoretical Results

Steven Minton _ Andrew B. Philips _ Mark D. Johnston 2 Philip Laird 3

1Sterling Federal Systems
NASA Ames Research Center

AI Research Branch

Mail Stop: 244-17
Moffett Field, CA 94035 USA

2Space Telescope Science Institute
3700 San Martin Drive,

Baltimore, MD 21218 USA

aNASA Ames Research Center
AI Research Branch

Mail Stop: 244-17
Moffett Field, CA 94035 USA

Abstract

This paper describes a simple heuristic method for solving large-scale constraint

satisfaction and scheduling problems. Given an initial assignment for the variables in a

problem, the method operates by searching though the space of possible repairs. The

search is guided by an ordering heuristic, the rain-conflicts heuristic, that attempts
to minimize the number of constraint violations after each step. We demonstrate

empirically that the method performs orders of magnitude better than traditional

backtracking techniques on certain standard problems. For example, the one million

queens problem can be solved rapidly using our approach. We also describe practical

scheduling applications where the method has been successfully applied. A theoretical
analysis is presented to explain why the method works so well on certain types of

problems and to predict when it is likely to be most effective.

1 Introduction

One of the most promising general approaches for solving combinatorial search problems is

to generate an initial, suboptimal solution and then to apply local repair heuristics. Tech-

niques based on this approach have met with empirical success on many problems, including

the traveling salesman and graph partitioning problems[12]. Such techniques also have a

long tradition in AI, most notably in problem-solving systems that operate by debugging

initial solutions [22, 24]. This idea can be extended to constraint satisfication problems

in a straightforward manner. Our method takes an initial, inconsistent assignment for the

variables in a constraint satisfaction problem (CSP) and incrementally repairs constraint vi-

olations until a consistent assignment is achieved. The method is guided by a simple ordering

heuristic for repairing constraint violations: select a variable that is currently participating

in a constraint violation, and choose a new value that minimizes the number of outstanding

constraint violations.

The work described in this paper was inspired by a surprisingly effective neural network

developed by Adorf and Johnston for scheduling the use of the Hubble Space Telescope[2, 14].

Our heuristic CSP method was distilled from an analysis of the network, and has the virtue

of being extremely simple. It can be implemented very efficiently within a symbolic CSP

framework, and combined with various search strategies. This paper includes empirical

studies showing that the method performs extremely well on some standard problems, such

as the n-queens problem, to the extent that the method can quickly find solutions to the

one million queens problem. We also describe initial work on large-scale scheduling appli-

cations which suggests that the method has important practical implications as well. The

final contribution of this paper is a theoretical analysis that describes how various problem

characteristics affect the performance of the method.

2 Previous Work: The GDS Network

By almost any measure, the Hubble Space Telescope scheduling problem is a complex task

[26, 21, 13]. Between ten thousand and thirty thousand astronomical observations per year

must be scheduled, subject to a vast variety of constraints involving time-dependent orbital

characteristics, power restrictions, priorities, movement of astronomical bodies, stray light

sources, etc. Because the telescope is an extremely valuable resource with a limited lifetime,

efficient scheduling is a critical concern. An initial scheduling system, developed in FOR-

TRAN using traditional programming methods, highlighted the difficulty of the problem; it

was estimated that it would take over three weeks for the system to schedule one week of

observations. A more successful constraint-based system was then developed to augment

the original system. At its heart is a neural network developed by Johnston and Adorf, the

Guarded Discrete Stochastic (GDS) network, which searches for a schedule[2, 14].

From a computational point of view, the network is interesting because Johnston and

Adorf found that it performs well on a variety of tasks, in addition to the space telescope

scheduling problem. For example, the network performs significantly better on the n-queens

problem than previous heuristic methods. The n-queens problem requires placing n queens

on an n x n chessboard so that no two queens share a row, column or diagonal. The network

has been used to solve problems of up to 1024 queens, whereas previous methods discussed

in the literature[23] encounter difficulties with problems that are ten times smaller. Later in

this paper we describe how our analysis of the GDS network enabled us to build a simple

heuristic algorithm that performs even better.

The GDS network is a modified Hopfield network[10]. The most significant modification

is that the main network is coupled asymmetrically to an auxiliary network of guard neurons

which restricts the configurations that the network can assume. This modification enables

the network to rapidly find a solution for many problems, even when the network is simulated

on a serial machine. The disadvantage is that convergence to a stable configuration isno

longer guaranteed. Thus, the network can fall into a local minimum involving a group of

unstable states among which it will oscillate. In practice, however, if the network fails to

converge after some number of neuron state transitions, it can simply be stopped and started
1over.

To illustrate the network architecture and updating scheme, let us consider how the

network is used to solve binary constraint satisfaction problems. A problem consists of n

variables, X1 ... Xn, with domains D1 ... D,, and a set of binary constraints. Each constraint

C_(X1, X_) is a subset of D_ x Dk specifying incompatible values for a pair of variables. _

To solve a CSP using the network, each variable is represented by a separate set of neurons,

one neuron for each of the variable's possible values. Each neuron is either "on" or "off",

and in a solution state, every variable will have exactly one of its corresponding neurons

"on", representing the value of that variable. Constraints are represented by inhibitory

(i.e., negatively weighted) connections between the neurons. To insure that every variable

is assigned a value, there is a guard neuron for each set of neurons representing a variable;

if no neuron in the set is on, the guard neuron will provide an excitatory input that is large

enough to turn one on. (Due to the way the connection weights are set up, it is unlikely

that the guard neuron will turn on more than one neuron.) The network is updated on each

cycle by randomly picking a set of neurons that represents a variable, and flipping the state

of the neuron in that set whose input is most inconsistent with its current output (if any).

When all neurons' states are consistent with their input, a solution is achieved.

3 The Min-Conflicts Heuristic

Why does the GDS network perform so much better than traditional backtracking methods

on tasks such as the n-queens? In addressing this question, we began with a number of

competing hypotheses (some of which were suggested in [2]). For instance, one hypothesis

1The emphasis in Johnston and Adorf's work is to produce a computational architecture that can effi-

ciently solve CSP problems, as opposed to modeling cognitive or neural behavior. Our discussion necessarily
ignores many aspects of Johnston and Adorf's work, which is described in detail elsewhere[14, 2].

2This paper only considers the task of finding a single solution, that is, finding an assignment for each of
the variables which satisfies the constraints.

was that the systematic nature of the search carried out by backtracking is the source of its

problems, as compared to the stochastic nature of the search carried out by the network.

Specifically, if solutions in the backtracking space are clustered together (with correspond-

ingly high inter-cluster distances), then a completely randomized search of the space can be

more effective than systematic backtracking. However, although tasks such as n-queens are

in fact solved more eificiently using randomized algorithms (such as Las Vegas algorithms

[4]), our studies indicate that the performance of the GDS network is far too good to be

explained by this hypothesis.

As it turns out, the key to the network's performance appears to be that when it chooses

a neuron to update, it chooses the neuron whose state is most inconsistent with its input.

Thus, from a constraint satisfaction perspective, the network will "deassign" a variable's

current value only if it is inconsistent with other variables. Furthermore, when a new value

is later assigned, the network will choose the value that minimizes the number of other

variables with which it is inconsistent. This idea is captured by the following heuristic:

Min-Conflicts Heuristic:

Given: A set of variables, a set of binary constraints, and an assignment specifying a

value for each variable. Two variables conflict if their values violate a constraint.

Procedure: Select a variable that is in conflict, and assign it a value that minimizes the

number of conflicts. 3 (Break ties randomly.)

We have found that the network's behavior can be approximated by a symbolic system

that uses the min-conflicts heuristic for hill-climbing. The hill-climbing system starts with

an initial assignment generated in a preprocessing phase. At each choice point, the heuristic

chooses a variable that is currently in conflict and reassigns its value, until a solution is

found. The system thus searches the space of possible assignments, favoring assignments

with fewer total conflicts. Of course, the hill-climbing system can become "stuck" in a local

maximum, in the same way that the network may become "stuck" in a local minimum. In

the next section we present empirical evidence to support our claim that the min-conflicts

heuristic is responsible for the network's effectiveness.

One of the virtues of extracting the heuristic from the network is that the heuristic

can be used with a variety of different search strategies in addition to hill-climbing. For

example, we have found that informed backtracking can be an effective strategy when used

in the following manner. Given an initial assignment generated in a preprocessing phase (as

described below), an informed backtracking program employs the min-conflicts heuristic to

order the choice of variables and values to consider, as described in figure 1. Initially the

variables are all on a list of VARS-LEFT, and as they are repaired, they are pushed onto a list

of VARS-DONE. The program attempts to find a sequence of repairs, such that no variable

3In general, the heuristic attempts to minimize the number of other variables that will need to be repaired.
For binary CSPs, this corresponds to minimizing the number of conflicting variables. For general CSPs, where
a single constraint may involve several variables, the exact method of counting the number of variables that
will need to be repaired depends on the particular constraint. The space telescope scheduling problem is a
general CSP, whereas most of the other tasks described in this paper are binary CSPs.

Procedure I_FOKMED-BACKTKACK (VAKS-LEFT VAKS-DONE)

If all variables are consistent,

then solution found, STOP.

Let VAK = a variable in VAKS-LEFT

that is in conflict.

Remove VAK from VAKS-LEFT.

Push VAR onto VAKS-DONE.

Let VALUES = list of possible values for VAK

ordered in ascending order according to number
of conflicts with variables in VARS-LEFT.

For each VALUE in VALUES, until solution found:

If VALUE does not conflict with any variable

that is in VARS-DONE, then

Assign VALUE to VAR.

Call INFORMED-BACKTRACK(VAKS-LEFTVAKS-DDNE)

end if

end for

end procedure

Begin program

Let VARS'LE_T = list of all variabieS,

each assigned an initial value.

Let VARS-DONE = nil

Call INFOKMED-BACKTKACK(VAKS-LEFT VAKS-DONE)

End program

Figure 1: Informed Backtracking Using the Min-Conflicts Heuristic

is repaired more than once. If there is no way to repair a variable in VARS-LEFT without

violating a previously repaired variable (a variable in VARS-DONE), the program backtracks.

It should be dear that the informed backtracking algorithm is simply a basic backtracking

algorithm augmented with the min-conflicts heuristic to order its choice of value bindings

for a variable. This illustrates an important point. The informed backtracking program

incrementally extends a consistent partial assignment (i.e., VARS-DONE), in the same manner

as a basic backtracking program, but in addition, uses information from the initial assignment

(i.e., VARS-LEFT) to bias its search. The next section documents the degree to which this
information is useful.

4 Experimental Results

This section has two purposes. First, we evaluate the performance of the min-conflicts

heuristic on some standard tasks using a variety of search strategies. Second, we show that

the heuristic, when used with a hill-climbing strategy, approximates the behavior of the GDS

network.

4

We have employed the following search strategies with the min-conflicts heuristic:

1. HiU-climbing: This strategy most closely replicates the behavior of the GDS network.

The disadvantage is that a hill-climbing program can get caught in local maxima, in

which case it will not terminate.

2. Informed backtracking: As described earlier, this strategy is a basic backtracking strat-

egy, augmented with the min-conflicts heuristic for ordering the assignment of variables

and values. Because the min-conflicts heuristic repairs the initial assignment, it can

also be viewed as backtracking in the space of possible repairs. One advantage of this

strategy is that it is complete - if there is a solution, it will eventually be found; if

not, failure will be reported. Unfortunately, this is of limited significance for large-

scale problems because terminating in a failure can take a very long time. A second

advantage is that the strategy can be augmented with pruning heuristics which cut off

unpromising branches. This can be very useful, as documented in the next section.

3. Best-first search: This strategy keeps track of multiple assignments (each correspond-

ing to a leaf in the search tree). On each cycle it picks the assignment with the fewest

constraint violations and considers the set of repairs that can be applied to that assign-

ment. We have found that best-first search (of which A* is one variation) is generally

expensive to employ on large-scale problems due to the cost of maintaining multiple

assignments.

4.1 The N-Queens Problem

The n-queens problem, originally posed in the 19th century, has become a standard bench-

mark for testing backtracking and CSP algorithms. In a sense, the problem of finding a single

solution was "solved" in the 1950's by the discovery of a pair of patterns that can be instan-

tiated in linear time to yield a solution[l]. Nevertheless, the problem has remained relatively

"hard" for heuristic search methods. Several studies of the n-queens problem [23, 9, 16] have

compared heuristic backtracking methods such as search rearrangement backtracking (e.g.,

most-constrained first), forward checking, dependency-directed backtracking, etc. However,

no previously identified heuristic search method has been able to consistently solve problems

involving hundreds of queens within a reasonable time limit. 4

On the n-queens problem, Adorf and Johnston [2] reported that the probability of the

GDS network converging increases with the size of the problem. For large problems, e.g., n >

100 (where n is the number of queens), the network almost certainly converges. Moreover,

the median number of cycles required for convergence is only about 1.16n. Since it takes

O(n) time to execute a transition (i.e., picking a neuron and updating its connections),

the expected time to solve a problem is (empirically) approximately O(n2). The network

has been used to solve problems with as many as 1024 queens, which takes approximately

4In a study that was published independently, subsequent to the submission of the original paper on

this work, Kale [15] reports on a very different heuristic specifically designed for N-Queens that also works
extremely well.

11 minutes in Lisp on a TI Explorer II. For larger problems, memory becomes a limiting

factor because the the network requires approximately O(n 2) space. (Although the number

of non-zero connections is O(n3), some connections are computed dynamically rather than

stored).

To compare the network with our rain-conflicts approach, we constructed a hill-climbing

program that operates as follows. An initial assignment is created in a preprocessing phase

using a greedy algorithm that iterates through the rows, placing each queen on the column

where it conflicts with the fewest previously placed queens (breaking ties randomly). In

the subsequent repair phase, the program keeps repairing the assignment until a solution is

found. To make a repair, the program selects a queen that is in conflict and moves it to a

different column in the same row where it conflicts with the fewest other queens (breaking

ties randomly). Interestingly, we found that this program performs significantly better than

the network. For n > 100 the program has never failed to find a solution. Moreover, the

required number of repairs appears to remain constant as n increases. After further analysis,

however, we found the hill-climbing program performs better than the network because the

hill-climbing program's preprocesslng phase invariably produces an initial assignment that

is "close" to a solution, in that the number of conflicting queens in the initial assignment

grows extremely slowly (from a mean of 3.1 for n = 10 to a mean of 12.8 for n = 106).

Once this difference was eliminated, by starting the network in an initial state produced

by our preprocessing algorithm, the network and the hill-climbing program performed quite

similarly. We note, however, that the network requires O(n 2) space, as compared to the

O(n) space required by the hill-climbing program, which prevented us from running very

large problems on the network.

Because the initial assignment had an effect on the number of steps necessary to solve

n-queens problems on the net, we decided to explore how different preprocessing methods

changed the mean number of conflicts created in the initial assignment. Several methods for

producing an initial assignment were examined, and three of these methods are compared

below. All of the initialization methods assign one queen per row. Consequently, only

columns and diagonals can contain more than one queen after intialization.

I I "= I°'I" = I° l" = I° l" = i° l" = io]
I co.mcts ter i ti zatio. 1 3.n 1 7.35 1 9.75 1 0.90 l 12.02I 2.S0 l

Table 1: Number of Conflicts for N-Queens Algorithms

In the first method each queen is placed in a randomly chosen column. Experimentally,

the number of queens involved in conflicts was found to be approximately .9N. This can

be attributed to the geometric properties of the problem. Repair strategies employing the

min-conflicts heuristic then took about .6N steps to find a solution. Note that even with

90% of the variables in conflict, the heuristic works extremely well; a solution is found in a

linear number of steps.

6

In the secondinitialization method the system puts one queen in each column, with
preferencegivento columnsthat havenoconflicts. To accomplishthis, the systemmaintains
a list of empty columns. When placing a queenin a given row, the system examinesthe
list of empty columns, looking for a position with no conflicts (i.e., a position with no
conflicts along the diagonals). If more than one column is found, the systemselectsamong
them randomly. If none are found, the systemrandomly selectsa position from the list
of empty columns. This method performs significantly better than the first initialization
method becausethe number of conflicts producedgrows very slowly. However, it doesa
bit worse than the initialization method usedin the experimentsdescribedabove,which
involvesa slight variation. In this third method, an initial assignmentis created using a
greedyalgorithm that iterates through the rows,placing eachqueenon the column whereit
conflicts with the fewestpreviously placedqueens(breakingties randomly). Table 1 shows
number of conflicts asN becomeslarge.

Strategy
BasicBacktrackf
Most ConstrainedBacktrackJ
MinConflictsHill-Climbing$
MinConflictsBacktrack_

n = 101

53.8

n = 102

4473 (70%)

687 (96%)

n = 10 3

88650 (13%)

n = 10 4 n = 10 5 n = 10 6

17.4 22150 (81%) * * *

57.0 55.6 48.8 48.5 52.8 48.3

46.8 25.0 30.7 27.5 27.8 26.4

i = number of backtracks, 1:= number of repairs

• = exceeded computational resources (100 runs required > 12 hours on a SPARCstationl)

Table 2: Number of Backtracks/Repairs for N-Queens Algorithms

Table 2 compares the efficiency of our hill-climbing program and several backtracking

programs. Each program was run 100 times for n increasing from 10 to one million. Each

entry in the table shows the mean number of queens moved, where each move is either a

backtrack or a repair, depending on the program. A bound of n x 100 queen movements

was employed so that the experiments could be conducted in a reasonable amount of time;

If the program did not find a solution after moving n x 100 queens, it was terminated and

credited with n x 100 queen movements. For the cases when this occurred, the corresponding

table entry indicates in parentheses the percentage of times the program completed success-

fully. The first row shows the results for a basic backtracking program. For n > 1000,

the program was completely swamped. The second row in the table shows the results for

informed backtracking using the "most-constrained first" heuristic. This program is a basic

backtracking program that selects the row that is most constrained when choosing the next

row on which to place a queen. In an empirical study of the n-queens problem, Stone and

Stone [23] found that this was by far the most powerful heuristic for the n-queens problem

out of several described earlier by Bitner and Reingold[3]. The program exhibited highly

variable behavior. At n = 1000, the program found a solution on only 815{ of the runs, but

three-quarters of these successful runs required fewer than 100 backtracks. Unfortunately,

7

for n > 1000, one hundred runs of the program required considerably more than 12 hours on

a SPARCstationl, both because the mean number of backtracks grows rapidly and because

the "most-constrained first" heuristic takes O(n) time to select the next row after each back-

track. Thus we were prevented from generating sufficient data for n > 1000. The next row

in the table shows the results for hill-climbing using the rain-conflicts heuristic. As discussed

above, this algorithm performed extremely well, requiring only about 50 repairs regardless

of problem size. The final row shows the results for an informed backtracking program

that used the min-conflicts heuristic as described in the previous section. We augmented

this program with a pruning heuristic that would initiate backtracking when the number

of constraint violations along a path began to increase significantly. However, for n >__100,

this program never backtracked (i.e., no queen had to be repaired more than once). The

results are better than those for the hill-climbing program (although there is little room for

improvement) primarily because the hill-climbing program tends to repair the same queen

again and again.

100

._10

etp _

0.1 "

0.01

i i
o,"

o.°°°

i°"

°p#

°, e_

_..°ooO°°°_1

1 2 3 4 5 6

10 10 10 10 10 10
Problem Size

Figure 2: Mean Solution Time for Hill-Climbing Program on N-Queens Problem

We note that for the two programs using the min-conflicts heuristic, each repair requires

O(n) time in the worst case. However, this is a relatively minor price to pay. Since the

number of repairs remains approximately constant as n grows, the average runtime of the

program is approximately linear. This is illustrated by figure 2, which shows the average

runtime for the hill-climbing program. In terms of realtime performance, this program solves

the million queens problem in less than four minutes on a SPARCstationl.

This program can also be optimized for large problems, in which case the solution time

is less than a minute and a half. Specifically, in the repair phase a two step process is

used to find the position with the fewest conflicts. The first step checks to see if ther_ are

any positions with zero:conflicts. To accomplish this, a set of empty columns is maintained

(note that we already have this set of empty columns from the initialization phase of the

algorithm). With this set, it is no longer necessary to search the entire row for a zero-conflict

8

position. Only positions that are in an empty column could possibly qualify. This set of

empty columns is very small compared to the total number of columns and can be scanned

for a suitable candidate in much less time.

Second, if there are no positions with zero conflicts, the program searches for a position

that has only one conflict. If we assume a homogeneous distribution of queens, the probability

of a column being a one-conflict position is roughly the same as the probability that both

diagonals are open, which is 1/2 x 1/2 or 1/4. Since we expect approximately 1/4 of the

columns to be one-conflict positions, the program can randomly test positions in the row

(with replacement) until a position is encountered that has only a single constraint violation.

Since it is very likely we will quickly find such a position, the amount of work here is small

compared to the O(n) work involved in identifying all such positions and then randomly

choosing one from that set. In practice, the program generally finds a one-conflict position

after just a few tries. Since, theoretically, the possibility exists that the program could not

terminate, we could stop this random search after a constant number of steps and then

search the row completely for a minimum conflicting position. We never bothered to add

this to the program, however, since in practice a one-conflict position is quickly found.

4.2 Scheduling Applications

A scheduling problem involves placing a set of tasks on a time line, subject to temporal

constraints, resource constraints, preferences, etc. The space telescope scheduling problem,

as discussed earlier, is a complex problem on which traditional backtracking and operations

research techniques are either inapplicable or perform poorly. The problem can be consid-

ered a constraint optimization problem where we must maximize both the number and the

importance of the constraints that are satisfied. As mentioned earlier, an initial scheduling

system developed without the use of AI techniques highlighted the difficulty of the problem;

it was estimated that the system, called SPSS, would take over three weeks to schedule one

week of observations. The constraint-based system, SPIKE, that was developed to augment

(and partially replace) the initial system has performed quite well using a relatively simple

approach.

The input to SPIKE is a set of detailed specifications for exposures that are to be sched-

uled on the telescope. These exposures are submitted by astronomers whose proposals have

been approved by a peer review process, An exposure specification includes a potentially

large number of configuration parameters describing how the data is to be taken. Johnston

[13] outlines the problem:

There are a variety of properties and relationships among these exposures that

may be specified by the proposer [astronomer]. Their relative order and time sep-

aration may be important. Some exposures are designed as calibrations or target

acquisitions for others. Some must be executed at specific times, or at specific

phases in the case of periodic phenomena. Some are especially sensitive to stray

or scattered light. Exposure durations may vary depending on background light

intensity. Some exposures must be executed without interruption while others

can be broken up as needed. In somecasesa specificorientation of an instru-
ment aperture is required. Someexposuresareconditionalon the resultsof other
exposures.

In addition to proposer-specifiedconstraints,there are a large number of other

constraints that must be considered when scheduling HST operations. They range

from "strict" constraints that cannot be violated under any circumstances, to

"good operating practices" that represent scheduling goals. HST is not allowed to

point closer than 50 ° to the sun and 15 ° to the bright moon. Slewing the telescope

is relatively slow (90 ° in -,_ 15 minutes) so it is important to minimize the time

spent in maneuvers. Many constraints are a direct result of HST's low orbital

altitude (500 kin) and consequent 95 minute orbital period. A typical target is

occulted by the earth for --, 40 minutes of each orbit. Up to half the orbits in a

day are contaminated for up to ,v 20 minutes by HST's passage through the South

Atlantic Anomaly, a high particle density region during which data cannot be

collected. Scattered earthlight changes dramatically over the course of an orbit...

The scheduling team at the Space Telescope Science Institute made the problem consid-

erably more tractable by breaking it into two parts: the long-term scheduling problem and

the short-term scheduling problem. The long-term problem consists of taking approximately

one year's worth of exposures, and dividing them up into "bins" or time segments of a few

days length. The short:term problem consists of coming up with a very detailed schedule for

a time segment, which can be translated into commands that the telescope can then directly

execute. Currently SPIKE handles only the long-term problem. The short-term problem has

a quite different nature, because it involves both planning and scheduling. (We use the term

planning to refer to the generation of a partially-ordered set of activities to achieve a set of

goals, and the term scheduling to refer to the process of placing activities on a time line.)

The short-term problem requires planning because an exposure may require activities such

as warming up or cooling down different instruments on the telescope, pointing maneuvers,

communication of data, etc. Currently, the short-term problem is handled by the original

SPSS system, however, Muscettola et al. [21] are developing AI planning techniques that

will hopefully do a better job. Another possibility is the extension of the SPIKE system so

that it can generate a Schedule for significantly smaller time buckets. The research reported

here may contribute to this goal, by improving the speed of the SPIKE system.

SPIKE operates by taking the exposure specifications prepared by astronomers and val-

idating that they are internally consistent. It then compiles the specifications into a set

of constraints, represented as relative temporal relations and "suitability functions". The

relative temporal relations specify the relative before/after ordering of tasks, and the maxi-

mal/minimal amount of time between tasks. Each suitability function is a function of time

whose value represents the desirability of starting an activity at a specified time, as given

by the constraint in question. For example, one suitability function may represent the con-

straint that the telescope should not point near the moon. Thus, the suitability of scheduling

an exposure when the target is close to the moon will be low (perhaps zero). Suitability

functions are represented internally as piecewise constant functions, enabling combinations

10

of multiple suitabilities to be calculatedefficiently.
Becauseof the uncertainty inherent in someconstraints, and also becausethe grain-

size of the time segmentsmay be relatively large, suitability functions are often used to

represent the statistical or aggregate desirability of scheduling an exposure during a certain

time segment. For example, a particular orbital constraint might state that an exposure

must be taken when the telescope is pointing more than 5 ° from the earth's limb and is in

the earth's shadow. The resulting suitability function might indicate, for each time segment,

the average amount of time these conditions are satisfied over that segment (which could

encompass many orbits). In other words, it would be preferable to schedule the exposure in

a time segment in which a relatively high number of such viewing opportunities occur.

Once SPIKE has compiled the astronomers' proposals into a set of constraints, it must

search for a good schedule. SPIKE employs a neural network to carry out this search,

the Guarded Discrete Stochastic (GDS) network[2, 14]. The GDS network is a modified

Hopfield network[10]. The most significant modification is that the main network is coupled

asymmetrically to an auxiliary network of guard neurons which restricts the configurations

that the network can assume. This modification enables the network to rapidly find a

solution for many problems, even when the network is simulated on a serial machine. The

disadvantage is that convergence to a stable configuration is no longer guaranteed, in which

case the network can fall into a local minimum involving a group of unstable states among

which it will oscillate. In practice, however, if the network fails to converge after some

number of neuron state transitions, it is simply stopped and started over.

To illustrate the network architecture and updating scheme, let us consider how the

network is used to solve the HST scheduling problem. Each task to be scheduled (an exposure

or block of exposures) is represented by a separate set of neurons, one neuron for each possible

time segment in the schedule. Each neuron is either "on" or "off"; if a neuron is "on" it

means the task is currently scheduled for that time segment. Inhibitory (i.e., negatively

weighted) connections between the neurons are used to indicate hard constraints between

tasks, where the suitability of placing two tasks in a certain configuration is zero. To insure

that each task is eventually assigned a time segment there is a guard neuron for each set

of neurons representing a task; if no neuron in the set is on, the guard neuron will provide

an excitatory input that is large enough to turn one on. (Due to the way the connection

weights are set up, it is unlikely that the guard neuron will turn on more than one neuron.)

The network is updated on each cycle by randomly selecting a set of neurons that represents

a task, and flipping the state of the neuron in that set whose input is most inconsistent

with its current output (if any). When all neurons' states are consistent with their input, a
solution is achieved.

The network updating scheme roughly accomplishes the following: If the task is currently

in conflict then it is removed from the schedule, and if the task is currently unscheduled then

the network schedules it for the time segment that has the fewest constraint violations. Note

that the network only represents hard constraints (i.e. it treats suitabilities as zero or one).

Soft constraints (where the suitability is between zero and one) are only consulted when

there are two or more "least conflicted" places to move a task.

11

The rain-conflicts algorithm has been shown to be at least as effective as the GDS network

on representative data sets provided by the Space Telescope Sciences Institute. In effect,

the min-conflicts algorithm mimics the behavior of the GDS network. In fact, the algorithm

was developed from an analysis of the network's performance. (The two approaches can

be parallelized in a similar manner, but currently both are run on serial machines.) In the

HST application, the min-conflicts algorithm operates by constructing an initial schedule in

a preprocessing phase, and iteratively repairs the schedule until a conflict-free schedule is

found (or the process is terminated by a preset iteration bound). Because our analysis of

the min-conflicts algorithm showed that a good initial assignment could greatly improve the

solution time, we use a greedy algorithm to create an initial schedule, rather than randomly

assigning tasks. 5 The greedy algorithm places each task on the schedule, at each point trying
to minimize the number of conflicts.

One advantage in using the min-conflicts algorithm, as compared to the GDS network,

is that much of the overhead of using the network can be eliminated (particularly the space

overhead). Moreover, because the min-conflicts heuristic is so simple, the scheduling program

could be quickly coded in C and is extremely efficient. (The scheduling program runs at least

an order of magnitude faster than the network, although some of the improvement is due

to factors such as programming language differences, which makes a precise comparison

difficult.) While this may be regarded as just an implementation issue, we believe that

the clear and simple formulation of the method was a significant enabling factor. We are

currently experimenting with a variety of different search strategies that can be combined

with the min-conflicts heuristic. Although this study is not yet complete, we expect that

the improvements in speed we have observed will eventually translate into better schedules,

since the search process can explore a larger number of acceptable schedules.

Several minor issues arose when implementing the HST application. First, the algorithm,

as specified in section 3, deals with binary constraints. The HST scheduling problem includes

non-binary constraints, i.e., constraints that may involve several variables. For example,

one constraint bounds the number of tasks that may be scheduled during a given time

segment. For general CSPs, the exact method of counting the number of conflicts for an

assignment may depend on the particular constraint in question. As it turned out, for the

HST application it sufficed to count each violated constraint as a single conflict, even though

multiple tasks might be involved in the violation.

A second issue concerns a difference between the GDS network and the min-confllcts

algorithm. As described earlier, the network will remove a conflicted task from the schedule

and then reschedule the task in two separate steps, which may not occur consecutively. In

contrast, the min-conflicts algorithm rearranges tasks on the schedule, rather than removing

them and reinserting them later. It appears that this difference is not significant, except

perhaps when the schedule is over-constrained (as discussed below).

8We discovered the importance of a good initial assignment by analyzing the min-conflicts algorithm, but
it has also been shown to hold for the network as well.

12

4.2.1 The Over-Subscription Problem

The HST scheduling problem can be considered a constraint optimization problem where

we must maximize both the number and the importance of the constraints that are satis-

fied [8, 20]. We note that the telescope is expected to remain highly over-subscribed, in

that many more proposals will be submitted than can be accommodated by any schedule.

Unfortunately, one difficulty in analyzing the performance of the scheduler is that no clear

objective exists for determining the best schedule in such cases. In particular, we would like

to maximize both the overall suitability of the schedule and the number of proposals that

can be accommodated - no clear policy for evaluating the tradeoff between these two goals

has yet been established by the Space Telescope Science Institute.

SPIKE handles the problem in a manner that is a bit ad-hoc, but apparently quite

satisfactory to its users. There is, in effect, a pool of tasks that are either unscheduled or

in conflict, and SPIKE's network updating scheme is equally likely to select any of these

tasks. (Unscheduled tasks will be moved onto the schedule, and tasks that are in conflict

will be moved off the schedule.) Thus, the number of unscheduled tasks are likely to remain

approximately equal to the number of tasks in conflict. When the algorithm is eventually

interrupted (assuming a conflict-free schedule has not been found) tasks that are in conflict

can be removed. One of the advantages of the min-conflicts algorithm is that it is relatively

easy to try a variety of schemes for dealing with overconstrained problems. We are currently

experimenting with two basic approaches. The first is to follow the approach taken by the

network (where tasks are removed and later re-inserted), but vary the procedure for removing

and inserting tasks. For example, we can alter the probability of choosing an unscheduled

task versus an already scheduled task, or bound the number of unscheduled tasks. (If we

set the bound to zero, then tasks will never be removed from the schedule, but simply be

moved from place to place on the schedule as in the normal case.) Another approach is to

use a more principled method for removing conflicting tasks after coming up with an initial

schedule, so that only the minimum number of conflicting tasks need to be removed.

4.3 Other Applications

The min-conflicts and/or GDS network have also been tried on a variety of other problems

with good (but preliminary) results, including the randomly generated problems described

by Dechter and Pearl [6, 2] and conjunctive precondition matching problems[19]. We are

currently cataloging the types of applications for which our method works well.

We have also compared the performance of the GDS network and the min-conflicts heuris-

tic on graph 3-colorability, a well-studied NP-complete problem. In this problem, we are

given an undirected graph with n vertices. Each vertex must be assigned one of three colors

subject to the constraint that no neighboring vertices be assigned the same color. Adorf and

Johnston found that the performance of the network depended greatly on the connectivity

of the graph. On sparsely connected graphs (with average vertex degree 4) the network per-

formed poorly, becoming caught in local minima with high probability. On densely connected

graphs the network converged rapidly to a solution.

13

We have repeated Adorf and Johnston's experiments with our hill-climbing program, and

found similar results. We have also experimented with variations of informed backtracking

using the min-conflicts heuristic. Our most effective program is an informed backtracking

program that records the assignment with the least conflicts found so far. When the number

of backtracks exceeds a (dynamically adjusted) threshold, the search process is restarted

using this best assignment. We have found that performance is further improved by adding

heuristics for selecting which vertex to repair, and that, as in the n-queens problem, it helps

to have a good initial assignment, which can also be produced using additional heuristics.

This illustrates the well-known principle that combining multiple heuristics can improve

performance significantly.

In this domain, certain heuristicmethods are known to produceexcellentresults. For

instance, Brelaz's k-colorability algorithm [5] employs two strong heuristics (forms of "most-

constrained first") and it outperforms our informed backtracking algorithm. Turner [25]

has shownthat this algorithm will optimally color "almost all" random k-coIorable graphs

without backtracking, so its dominance is not surprising.

4.4 Summary of Experimental Results

For all of the tasks discussed in the previous section, we have found that the behavior of

the GDS network can be aiSproximated by hill-climbing wiih the min-conflicts heurlstic. To

this extent, we have a theory that explains the network's behavior. Obviously, there are

certain practical advantages to having "extracted" the heuristic from the network. First,

the heuristic is very simple, and so can be programmed extremely efficiently, especially if

done in a task-specific manner. Second, the heuristic can then be used in combination with

differen(search strategies _ and task-spec-i_c-_e=ur_stlcs.- Thls is a s_gnl_cazit factor for most

practical applicati6ixs. :::- : = _:-

Insofar as the power of the heuristic is conc6_erned,our experimental results are encour-

aging. On t_e n-queens-pr0biem the m_ic-/s_euHsti-c cl-eariyoutperirorms heuristics

that have previously been investigated. Furthermore, the heuristic has already been applied

successfully to real-world scheduling problems. -=_- _ - -

We have also considered variations of the min-conflicts heuristic, such as repairing the
.......................

variable that participates in the most conflicts first. In some cases, such variations im-

prove the performanace of the algorithm, and in other cases performance is not significantly

changed_ As long as-the_euristic tends to decrease t_e number of variables that are incon-

sistent, it appears that our basic results tend to hold.

5 Analysis

The p_rev!pus section showed that the min-conflicts heuristic is extremeI X effective:on some

tasks, such as placing queens on a chessbo_d, and less effectiveon other tasks, such as"

coloring sparsely connecte d graphs. In this section, we analyze how the parameters of a task :
influence the effectiveness of the heuristic. Consider a CSP with n variables, where each

14

variable has k possible values. We restrict our consideration to a simplified model where

every variable is subject to exactly c binary constraints, and we assume that there is only

a single solution to the problem, that is, exactly one satisfying assignment. We address

the following question: What is the probability that the min-conflicts heuristic will make

a mistake when it assigns a value to a variable that is in conflict? We define a mistake as

choosing a value that will have to be changed before the solution is found. We note that for

our informed backtracking program, a mistake of this sort may prove fatal, as it may require

an exponential amount of search to recover from a mistake.

For any assignment of values to the variables, there will be a set of d variables whose

values will have to be changed to convert the assignment into the solution. We can regard d

as a measure of distance to the solution. The key to our analysis is the following observation.

Given a variable V to be repaired, only one of its k possible values will be good s and the

other k - 1 values will be bad (i.e., mistakes). Whereas the good value may conflict with

at most d other variables in the assignment, a bad value may conflict with as many as c

other variables. Thus, as d shrinks, the min-conflicts heuristic should be less likely to make

a mistake when it repairs V. In fact, if each of the k - 1 bad values has more than d conflicts,

then the min-conflicts heuristic cannot make a mistake - it will select the good value when

it repairs this variable, since the good value will have fewer conflicts than any bad value.

We can use this idea to bound the probability that the min-conflicts heuristic will make

a mistake when repairing variable V. Let V r be a variable related to V by a constraint. We

assume that a bad value for V conflicts with an arbitrary value for V' with probability p,

independent of the variables V and V'. Consider an arbitrary bad value for V. Let Nb be the

total the number of conflicts between this bad value and the values for the other variables.

Given the above assumptions, the expected value of Nb is pc, because there are exactly c

variables that share a constraint with V, and the probability of a conflict is p. As mentioned

above, the min-conflicts will not make a mistake if the number of conflicts Nb for each bad

value is greater than d. We can, therefore, bound the probability of making a mistake by

bounding the probability that Nb is less than or equal to d.

To bound Nb, we use Hoeffding's inequality, which states that the sum N of n indepen-

dent, identically distributed random variables is less than the expected value/_" by more than

sn only with probability at most e -2_2". In our model, Nb is the sum of c potential conflicts,

each of which is either 1 or 0, depending on whether there is a conflict. The expected value

of Nb is pc. Thus:

Pr(Nb _< pc -- sc) <_ e -2_c

Since we are interested in the behavior of the min-conflicts heuristic as d shrinks, let us

suppose that d is less than pc. Then, with s = (pc - d)/c, we obtain:

Pr(Nb < d) < e -2(_-d)2/c

6Although a variable is in conflict, its current value may actually be the good value. This can happen
when the variable with which it conflicts has a bad value. In this paper we have defined the min-conflicts
heuristic so that it can choose any possible value for the variable, including its initial value.

15

To accountfor the fact that a mistakecan occur if any of the k - 1 bad values has d or

fewer conflicts, we bound the probability of making a mistake on any of them by multiplying

by k- 1:

Pr(mistake) < (k- 1)e -2(w-d)2/C

Note that as c (the number of constraints per variable) becomes large, the probability of

a mistake approaches zero, if all other parameters remain fixed. This analysis thus offers an

explanation as to why 3-coloring densely connected graphs is relatively easy. We also see that

as d becomes small, a mistake is also less likely, explaining our empirical observation that

having a "good" initial assignment is important. Additionally, we note that the probability

of a mistake also depends on p, the probability that a bad value conflicts with another

variable's value, and k, the number of values per variable. The probability of a mistake

shrinks as p increases or k decreases.

The analysis makes several simplifying assumptions, including the assumption that only

a single solution exists. In the n-queens problem, it appears that the number of possible

solutions grows rapidly with n [23]. To explain the excellent performance of the min-conflicts

heuristic on the n-queens problem, it seems necessary to take this additional fact into account;

we note that for n-queens the bounds derived above are relatively weak. (In n-queens,

each row is represented by a variable, so that c = n, and p _ 2.5/n, since any two rows

constrain each other along a column and either one or two diagonals. Therefore, pc remains

approximately constant as n grows.)

6 Discussion

The heuristic method described in this paper can be characterized as a local Search method[i2],

in that each repair minimizes the number of conflicts for an individual variable. Local search

methods have been applied to a variety of important problems, often with impressive re-

sults. For example, the Kernighan-Lin method, perhaps the most successful algorithm for

solving graph-partitioning problems, repeatedly improves a partitioning by swapping the two

vertices that yield the greatest cost differential. The much-publicized simulated annealing

method can also be characterized as a form of local search[ll]. However, it is well-known

that the effectiveness of local search methods depends greatly on the particular task. We are

currently comparing the algorithm's performance with alternative techniques on a variety of
tasks.

There is also a long history of AI programs that use repair or debugging strategies

to solve problems, primarily in the areas of planning and design[24, 22]. These programs

have generally been quite successful, although the repair strategies they employ may be

domain specific. In comparison, the min-conflicts heuristic is a completely general, domain-

independent approach. Of course, any domain-independent heuristic is likely to fail in certain

cases, precisely because of its lack of domain-specific expertise.

In fact, it is easy to imagine problems on which the min-conflicts heuristic will fail.

The heuristic is poorly suitedto problems With a few-highly criticai constralnis _da large

16

number of lessimportant constraints. For example,considerthe problem of constructing a
four-year courseschedulefor a university student. We may havean initial schedulewhich
satisfiesalmost all of the constraints, except that a coursescheduledfor the first year is
not actually offeredthat year. If this courseis a prerequisite for subsequentcourses,then
many significant changesto the schedulemay be required beforeit is fixed. In general,if
repairing a constraint violation requirescompletelyrevising the current assignment,then the
min-conflicts heuristic will offer little guidance. This intuition is partially captured by the
analysispresentedin the previoussection,which showshow the effectivenessof the heuristic
is inverselyrelated to the distanceto a solution.

The problems investigated in this paper, especially the n-queens problem, tend to be

relatively uniform, in that the likelihood of such critical constraints existing is low. In the

space telescope scheduling problem, constraint preprocessing techniques[18] are applied to

reduce the likelihood that any particular constraint will be highly critical. For example, by

taking the transitive closure of temporal constraints (e.g. the "after" relation) and repre-

senting each inferred constraint explicitly, critical constraints can be transformed into sets of

constraints. This works well because the rain-conflicts heuristic will be less likely to violate a

set of constraints than a single constraint. In some cases, we expect that more sophisticated

techniques will be necessary to identify critical constraints[7]. To this end, we are currently

evaluating abstraction and explanation-based learning techniques that have worked well for

planning systems[17, 19].

7 Conclusions

This paper has two primary contributions. First, we have analyzed a very successful neu-

ral network algorithm and shown that an extremely simple heuristic is responsible for its

effectiveness. Second, we have demonstrated that this heuristic can be incorporated into

symbolic CSP programs with excellent results.

8 Acknowledgements

The authors wish to thank Hans-Martin Adorf, Richard Franier, and Don Rosenthal for

their assistance on this research project, and Peter Cheeseman, Monte Zweben, John Bresina,

Megan Eskey, Mark Drummond, Eric Raymond, Oren Etzioni, Craig Knoblock and Bernadette

Kowalski for their Comments and advice, and for their company during late-night dinners.

The Space Telescope Science Institute is operated by the Association of Universities for

Research in Astronomy for NASA.

17

Appendix A" Hill Climbing with Minimum Conflicts

This piece of Lisp code implements a hill climbing algorithm employing the min-conflicts

heuristic. Each queen is assigned to a single row. So, in constraint satisfaction terms, each

row is a variable and each column assignment is its value. Note: this program is a simplified,

but less efficient, version of the one described in the paper.

Execute the following lisp statements for a sample run of the code solving for the tradi-

tional 8 queens problem.

(setq *same-assignment* nil)

(setq *vars-created* nil)

(setq *cutoff* i000)

(setq *printing* t)

(minconflicts-hc 8)

(print-pic)

And, now the program...

(proclaim '(special *num-times* *nodes* *same-assignment* *vars-created*

printing *cutoff* *num-vars-violated*

board *num-col-elts* *num-up-diag-elts*

num-dn-diag-elts))

(defun minconflicts-hc (n)

(setq *num-times* O)

(if (not *vars-created*)

(create-vars n))

(if (not *same-assignment*)

(create-assignment n))

(find-sol n)

num-times)

(defun find-sol (n)

(loop with row = nil

with new-col = nil

with old-col = nil

with limit = (I- n)

18

while (setq row (find-a-violated-row limit))
do (setq old-col (eli *board_ row))

(setq new-col (find-least-violated-col row old-col limit))
(sub-queen row old-col limit)

(add-queen row new-col limit)

(if *printing* (print-info row old-col new-col))

(setq _num-times_ (I+ _num-times*))

until (> *num-times_ _cutoff_)))

(defun find-a-violated-row (limit)

(setq *num-vars-violated* O)

(loop with row = 0

with col = 0

with vio-rows = nil

with max-vios = 0

with num-vios = 0

do (setq col (elt *board* row))

(setq num-vios (num-preexisting-vios row col limit))

(cond ((equal 3 num-vios)) ; three = zero violations

(t (push row rio-rows)))

until (> (incf row) limit)

finally (progn (setq *num-vars-violated* (length rio-rows))

(return (and rio-rows (get-a-random vio-rows))))))

(defun find-least-violated-col (row old-col limit)

(loop with col = 0

with least-vios-cols = nil

with min-vios = limit

with num-vios = 0

do (cond ((not (eq old-col col))

(setq num-vios (num-preexisting-vios row col limit))

(cond ((equal num-vios min-vios)

(push col least-vios-cols))

((< num-vios min-vios)

(setq least-vios-cols nil)

(push col least-vios-cols)

(setq min-vios num-vios)))))

until (> (incf col) limit)

finally (progn (if (eql min-vios 3)

(error "no columns are violated"))

19

(return (get-a-random least-vios-cols)))))

(defun create-vats (n)
(setq *board* (make-array n :element-type 'fixnum :initial-element 0))
(setq *num-col-elts*

(make-array n :element-type 'fixnum :initial-element 0))
(setq *num-up-diag-elts*

(make-array (1- (* 2 n)) :element-type 'fixnum :initial-element 0))
(setq *num-dn-diag-elts*

(make-array (I- (* 2 n)) :element-type 'fixnum :initial-element 0)))

(defun create-assignment (n)

(loop with limit - (i- n)

with row = 0

with cole-left = (make-n limit)

do (fill-row row limit n cols-left)

(setq cols-left (remove (elt *board* row) cols-left))

until (> (incf row) limit)))

(defun fill-row (row limit n columns)

(loop with col - nil

with best-col = (get-a-random columns)

with best-vios = n

with num-vios = 0

while (setq columns (remove (setq col (get-a-random columns)) columns))

do (setq num-vios (+ (elt *num-col-elts* col)

(elt *num-dn-diag-elts* (+ limit (- row col)))

(elt *num-up-diag-e!ts* (+ row:_co1))))

(cond ((< num-vios best-vios)i_ =

(setq best-vios num-vios best-col col)))

until (equal 0 best-vios)

finally (add-queen row best-col limit)))

(defun add-queen (row col limit)

(se£f-(eit *board*-row) col)--

(setf (elt *num-col-elts* col) (1+ (eli *num-col-elts* col)))

(setf (elt _num-dn-diag-elts* (+ limit (- row col)))

(1+ (elt *num-dn-diag-elts* (+ limit (- row col)))))

(serf (elt *num-up-diag-elts* (+ row col))

2O

(I+ (elt *num-up-diag-elts* (+ row col)))))

(defun sub-queen (row col limit)

(setf (elt *board* row) O)

(setf (elt *num-col-elts* col) (I- (elt *num-col-elts* col)))

(serf (elt *num-dn-diag-elts_ (+ limit (- row col)))

(I- (elt *num-dn-diag-elts* (+ limit (- row col)))))

(serf (elt *num-up-diag-elts* (+ row col))

(I- (elt *num-up-diag-elts* (+ row col)))))

(defun num-preexisting-vios (row col limit)

(+ (elt *num-col-elts* col)

(elt *num-dn-diag-elts* (+ limit (- row col)))

(elt *num-up-diag-elts* (+ row col))))

(defun get-a-random (x)

(nth (random (length x)) x))

(defun print-info (vat old-val new-val)

"Prints solution status every iteration"

(format t " -A -_" *hum-vats-violated*)

(format t "-A -A "A -A Vios: "

•num-times_ vat old-val new-val))

(defun print-pic ()

"Prints a NxN picture of the board"

(loop with i = 0

with size = (length *board*)

while (< i size)

do (loop with j = 0

while (< j size)

do (cond ((equal j (elt *board* i))

(format t "'A" "I*"))

(t (format t "-A" "[")))

(incf j)

finally (format t "-A'_" "I"))

(incf i))

(terpri))

21

(defun make-n (n)

(r-make-n n nil))

(defun r-make-n (n I)

(cond ((equal n O) (cons 0 1))

(t (r-make-n (I- n) (cons n 1)))))

22

References

[1] B. Abramson and M. Yung. Divide and conquer under global constraints: A solution

to the n-queens problem. Journal of Parallel and Distributed Computing, 61:649-662,
1989.

[2] H.M. Adorf and M.D. Johnston. A discrete stochastic neural network algorithm for

constraint satisfaction problems. In Proceedings of the International Joint Conference

on Neural Networks, San Diego, CA, 1990.

[3] J. Bitner and E.M. Reingold. Backtrack programming techniques. Communications of

the ACM, 18:651-655, 1975.

[4] G. Brassard and P. Bratley. Algorithmics - Theory and Practice. Prentice Hall, Engle-

wood Cliffs, N J, 1988.

[5] D. Brelaz. Almost all k-colorable graphs are easy to color. Journal of Algorithms,

9:63-82, 1988.

[6] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems.

Artificial Intelligence, 34:1-38, 1988.

[7] M.S. Fox, N. Sadeh, and C. Baykan. Constrained heuristic search. In Proceedings

IJCAL89, Detroit, MI, 1989.

[8] E.C. Freuder. Partial constraint satisfaction. In Proceedings IJCAI-89, Detroit, MI,
1989.

[9] R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence, 14:263-313, 1980.

[10] J.J. Hopfield. Neural networks and physical systems with emergent collective computa-

tional abilities. In Proceedings of the National Academy of Sciences, volume 79, 1982.

[11] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simulated

annealing: An experimental evaluation, Part II. To appear in Journal of Operations

Research, 1990.

[12] D.S. Johnson, C.H. Papadimitrou, and M. Yannakakis. How easy is local search? Jour-

nal of Computer and System Sciences, 37:79-100, 1988.

[13] M.D. Johnston. Automated telescope scheduling. In Proceedings of the Symposium on

Coordination of Observational Projects. Cambridge University Press, 1987.

[14] M.D. Johnston and H.M. Adorf. Learning in stochastic neural networks for con-

straint satisfaction problems. In Proceedings of NASA Conference on Space Telerobotics,

Pasadena, CA, January 1989.

[15] L.V. Kale. An almost perfect heuristic for the n nonattacking queens problem. Infor-

mation Processing Letters, 34:173=178, 1990.

[16] N. Keng and D.Y.Y. Yun. A planning/scheduling methodology for the constrained

resource problem. In Proceedings IJCAL89, Detroit, MI, 1989.

23

[17] C.A. Knoblock. Learning hierarchiesof abstractionspaces.In Proceedings of the Sixth

International Conference on Machine Learning, Ithica, N.Y., 1989.

[18] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:98-118,

1977.

[19] S. Minton. Empirical results concerning the utility of explanation-based learning. In

Proceedings AAAI-88, Minneapolis, MN, 1988.

[20] Fox M.S. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. Morgan

Kaufmann Publishers, Inc., 1987.

[21] N. Muscettola, S.F. Smith, G. Amiri, and D. Pathak. Generating space telescope ob-

servation schedules. Technical Report CMU-RI-TR-89-28, Carnegie Mellon University,

Robotics Institute, 1989.

[22] R.G. Simmons. A theory of debugging plans and interpretations. In Proceedings AAAI-

88, Minneapolis, MN, 1988.

[23] H.S. Stone and J.M. Stone. Efficient search techniques - an empirical study of the

n-queens problem. IBM Journal of Research and Development, 31:464-474, 1987.

[24] G. J. Sussman. A Computer Model of Skill Acquisition. American Elsevier, New York,

1975.

[25] J.S. Turner. New methods to color the vertices of a graph. Communications of the

ACM, 22:251-256, 1979.

[26] M. Waldrop. Will the Hubble space telescope compute? Science, 243:1437-1439, 1989.

24

